If it's not what You are looking for type in the equation solver your own equation and let us solve it.
h^2-4h=0
a = 1; b = -4; c = 0;
Δ = b2-4ac
Δ = -42-4·1·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4}{2*1}=\frac{0}{2} =0 $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4}{2*1}=\frac{8}{2} =4 $
| 4+(2x+3)=40 | | 8+2(x+3)=40 | | 8+2x+3=40 | | 4(n-14)=2(2n-7) | | -3(b-10)=12 | | 135=-9(-6-3k) | | 2(9-4y/2)+4y=18 | | 17=-25+6x | | 0.4(x-20)=0.1(-x+20) | | X+2(x-1)=5 | | 1/2n=9+15 | | 4(2x-3)=-6x-12 | | 2g^2-6g-9=0 | | 2x2x2x2x2=2x | | 5t-3=4t-10 | | y=4(0.8)^T | | -3x-9=2-4x | | 2t-14=1-t | | 2x+-79=129-11x | | d=16.2 | | 5n+22=7 | | q+27=-0.9 | | 5+2.5x=21 | | 4x+35=775 | | 7y+20=5y-20 | | -2(r-4)=-4 | | 9/25x=5/3x^-2 | | 5j=4 | | x^2-12=-5x+18 | | 14=x/2-12 | | a^2+6a-2=0 | | x^2-14-51=0 |